Dual inhibitory effects of dopamine on Na+ homeostasis in rat aorta smooth muscle cells

Author:

Borin M. L.1

Affiliation:

1. Department of Physiology, University of Maryland School of Medicine,Baltimore 21201, USA.

Abstract

Dopamine is an essential catecholamine, which acts not only as a neurotransmitter in sympathetic neurons but also exhibits vasodilating and natriuretic effects in renal tubular cells, blood vessels, etc. This study describes the effect of dopamine on Na+ influx and Na+ efflux and the resulting changes in intracellular Na+ concentration ([Na+]i). [Na+]i was measured in primary cultured vascular smooth muscle cells from rat aorta with digital imaging of cells loaded with the Na+-sensitive fluorescent indicator, SBFI. Na+ influx and Na+ efflux were measured as changes in [Na+]i under the conditions of inhibition of the Na+ flux in the opposite direction. Dopamine inhibited Na+ influx in a dose-dependent manner with a maximal inhibition, approximately 45%, achieved at 10(-4) M. This effect of dopamine, as suggested by several lines of evidence, was mediated by inhibition of Na+/H+ exchange. Besides inhibition of Na+ efflux, dopamine also, with a similar potency, inhibited Na+ efflux. The latter effect was due to inhibition of the Na+ pump-mediated component of Na+ efflux, since it was not observed when Na+ pump was inhibited. Inhibition of the Na+ pump by dopamine was due to the reduction in its maximal flux and not due to the decrease in the Na+ sensitivity of the pump. Similar to dopamine, activation of protein kinase A by 8-bromoadenosine 3',5'-cyclic monophosphate (8-BrcAMP) caused inhibition of both Na+ influx and Na+ pump-mediated Na+ efflux. In contrast, activation of protein kinase C by the phorbol ester, phorbol 12,13-dibutyrate, caused activation of both Na+ influx and Na+ pump-mediated Na+ efflux. H-7, a nonspecific protein kinase inhibitor, abolished the inhibitory effects of either dopamine or 8-BrcAMP on Na+ efflux but did not affect the inhibitory effects of these compounds on Na+ influx. Dopamine either did not change [Na+]i or evoked a slight, 2-3 mM, increase in [Na+]i. Together, these results demonstrate that, in rat aortic smooth muscle cells, 1) dopamine inhibits Na+/H+ exchange-mediated Na+ influx, 2) dopamine inhibits Na+ pump-mediated Na+ efflux, 3) these effects of dopamine are mediated by an increase in cellular cAMP and, at least in the case of inhibition of the Na+ efflux, by the activation of protein kinase A, and 4) dopamine causes either small or no changes in [Na+]i, due to almost equal inhibition of Na+ influx and Na+ efflux.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Paracrine Regulation of Renal Function by Dopamine;Seldin and Giebisch's The Kidney;2013

2. Dopamine and Renal Function and Blood Pressure Regulation;Comprehensive Physiology;2011-07

3. Dopamine receptors and hypertension;Current Hypertension Reports;2008-08

4. Ouabain augments Ca2+ transients in arterial smooth muscle without raising cytosolic Na+;American Journal of Physiology-Heart and Circulatory Physiology;2000-08-01

5. Intrarenal Dopamine: A Key Signal in the Interactive Regulation of Sodium Metabolism;Annual Review of Physiology;2000-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3