The role of mitochondria in pharmacotoxicology: a reevaluation of an old, newly emerging topic

Author:

Scatena Roberto,Bottoni Patrizia,Botta Giorgia,Martorana Giuseppe E.,Giardina Bruno

Abstract

In addition to their well-known critical role in energy metabolism, mitochondria are now recognized as the location where various catabolic and anabolic processes, calcium fluxes, various oxygen-nitrogen reactive species, and other signal transduction pathways interact to maintain cell homeostasis and to mediate cellular responses to different stimuli. It is important to consider how pharmacological agents affect mitochondrial biochemistry, not only because of toxicological concerns but also because of potential therapeutic applications. Several potential targets could be envisaged at the mitochondrial level that may underlie the toxic effects of some drugs. Recently, antiviral nucleoside analogs have displayed mitochondrial toxicity through the inhibition of DNA polymerase-γ (pol-γ). Other drugs that target different components of mitochondrial channels can disrupt ion homeostasis or interfere with the mitochondrial permeability transition pore. Many known inhibitors of the mitochondrial electron transfer chain act by interfering with one or more of the respiratory chain complexes. Nonsteroidal anti-inflammatory drugs (NSAIDs), for example, may behave as oxidative phosphorylation uncouplers. The mitochondrial toxicity of other drugs seems to depend on free radical production, although the mechanisms have not yet been clarified. Meanwhile, drugs targeting mitochondria have been used to treat mitochondrial dysfunctions. Importantly, drugs that target the mitochondria of cancer cells have been developed recently; such drugs can trigger apoptosis or necrosis of the cancer cells. Thus the aim of this review is to highlight the role of mitochondria in pharmacotoxicology, and to describe whenever possible the main molecular mechanisms underlying unwanted and/or therapeutic effects.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Reference120 articles.

1. Isoniazid overdose: Four case reports and review of the literature

2. Mitochondria-derived oxidative stress induces a heat shock protein response

3. Genistein Induces Apoptosis in T Lymphoma Cells via Mitochondrial Damage

4. Bayley JP, Devilee P, Taschner PE. The SDH mutation database: an online resource for succinate dehydrogenase sequence variants involved in pheochromocytoma, paraganglioma and mitochondrial complex II deficiency. BMC Med Genet 6: 39, 2005.

5. Bcl-2 Antisense (oblimersen sodium) Plus Dacarbazine in Patients With Advanced Melanoma: The Oblimersen Melanoma Study Group

Cited by 139 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3