Affiliation:
1. Department of Physiology and Cell Biology, University of Texas MedicalSchool, Houston 77225.
Abstract
Isoprenylated proteins function in the processes of signal transduction and membrane vesicle trafficking. To investigate the role of isoprenylated proteins in secretagogue-stimulated epithelial ion transport, we studied the effects of lovastatin, an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase, on adenosine 3',5'-cyclic monophosphate (cAMP)- and Ca(2+)-stimulated Cl- secretion by monolayers of T84 colonic epithelial cells. Lovastatin reduces protein isoprenylation in many cell types. In T84 cells, lovastatin reversibly inhibits forskolin-stimulated equivalent short-circuit current (I(sc)eq) by 50% after 2 days of treatment. The concentration of lovastatin resulting in half-maximal effects on forskolin-stimulated I(sc)eq is consistent with inhibition of protein isoprenylation, and lovastatin effects on forskolin-stimulated I(sc)eq are not associated with inhibition of cholesterol or glycoprotein biosynthesis. Lovastatin blocks N6,2'-O-dibutyryladenosine 3',5'-cyclic monophosphate- and ionomycin-stimulated Isc, suggesting that it inhibits a process beyond the stimulation of cAMP and Ca2+ second-messenger systems. In monolayers in which the basolateral membrane has been permeabilized with nystatin, lovastatin inhibits cAMP activation of a diphenylamine-2-carboxylate-sensitive, apical membrane Cl- conductance. Our results are consistent with the hypothesis that an isoprenylated protein is involved in the regulation of a secretagogue-activated apical membrane Cl- conductance in T84 cells.
Publisher
American Physiological Society
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献