Nonpolarized surface distribution and delivery of human CD7 in polarized MDCK cells

Author:

Haller C.1,Alper S. L.1

Affiliation:

1. Molecular Medicine Unit, Beth Israel Hospital, Boston,Massachusetts.

Abstract

Madin-Darby canine kidney (MDCK) cells grown on permeable supports have served as the most common experimental system for in vitro studies of the generation and maintenance of epithelial surface polarity. Protein targeting to the apical and basolateral plasmalemmal domains of these and other polarized epithelia has been suggested to rely on targeting sequences. Two simple sorting models for MDCK cells have proposed active sorting to a single domain, with "default" movement to the other domain. Examples of both apical and basal sorting signals have been found to support each hypothesis, but the idea of a default pathway has remained in question. Indeed, all endogenous and heterologous wild-type proteins so far studied in MDCK cells achieve polarized distributions at steady state. It is not known whether these selected proteins are representative of all surface membrane proteins or represent only a subset. We report here the apparent absence of sorting by MDCK cells of the transmembrane protein of T-cells, CD7. CD7 is expressed at similar density in apical and basolateral membranes of MDCK cells as assessed by both immunocytological and biochemical criteria. Furthermore, CD7 appears to be directly sorted to both surfaces at similar rates and turns over at both surfaces at similar rates. The nonpolarized distribution of CD7 appears independent of its level of expression. CD7 may identify a "bulk-flow" default pathway for plasma membrane proteins expressed in polarized MDCK cells.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3