Emptying and refilling of Ca2+ store in tracheal myocytes as indicated by ACh-evoked currents and contraction

Author:

Janssen L. J.1,Sims S. M.1

Affiliation:

1. Department of Physiology, University of Western Ontario, London,Canada.

Abstract

Membrane currents and contractions evoked by acetylcholine (ACh) in freshly dissociated canine tracheal myocytes were investigated using the nystatin perforated-patch recording technique. In cells held at -60 mV in the presence of nifedipine, ACh evoked inward current (IACh) and contraction. Caffeine mimicked the effects of ACh. IACh and contractions could be evoked 3-4 min after removing external Ca2+ but were abolished by prolonged exposure to Ca(2+)-free media. Both responses were restored within minutes of reintroduction of Ca2+, even though the cells were held at -60 mV in the presence of nifedipine. IACh and ACh-evoked contractions were also reversibly abolished by continued exposure to caffeine. Cyclopiazonic acid (CPA), a blocker of the sarcoplasmic reticulum (SR) Ca(2+)-ATPase, reduced IACh by > 95% within 15 min but had little or no effect on the contractile responses evoked by ACh. IACh was restored after washout of CPA even though cells were held at -60 mV. After depleting the Ca2+ store with the use of CPA, depolarization of the membrane to +10 mV immediately before application of ACh led to a partial restoration of IACh. This restorative effect of depolarization was potentiated by Bay K 8644 and antagonized by nifedipine. In conclusion, IACh and contractions in canine tracheal myocytes are mediated by Ca2+ released from an internal store that can be depleted by prolonged removal of extracellular Ca2+, prolonged exposure to caffeine, or by blockade of the SR Ca(2+)-ATPase. At least two Ca2+ influx pathways appear to contribute to refilling of the internal store: one pathway that is not activated by depolarization or ACh and a second involving dihydropyridine-sensitive voltage-activated Ca2+ channels that may be in direct contact with the SR (i.e., conduct extracellular Ca2+ directly into the SR, bypassing the cytosol).

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3