Chemotaxis of newt eosinophils: calcium regulation of chemotactic response

Author:

Brundage R. A.1,Fogarty K. E.1,Tuft R. A.1,Fay F. S.1

Affiliation:

1. Department of Physiology, University of Massachusetts Medical School,Worcester 01605.

Abstract

Local chemical events underlying chemotaxis were characterized in a new model cell, the newt eosinophil. These cells exhibit a chemotactic response to a trypsin-sensitive component of newt serum. Ca2+ plays a role in this process, since treatments expected to diminish Ca2+ availability from the medium [ethylene glycol-bis (beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid, Co2+, and verapamil], to break down transmembrane Ca2+ gradients (ionomycin), or to interfere with the function of intracellular Ca2+ stores (caffeine and neomycin) inhibited cell polarization and movement. Using imaging techniques we found that cytosolic Ca2+ concentration ([Ca2+]i) increased in response to newt serum. Migrating newt eosinophils exhibited a dynamic heterogeneous distribution of [Ca2+]i. [Ca2+]i was elevated in cells undergoing a change of direction relative to cells migrating persistently in one direction. Migrating cells contained gradients of [Ca2+]i along their long axis, with the front of the cell having consistently lower [Ca2+]i than the rear. When cells were loaded with the cell-permeant form of fura 2, fura 2 acetoxymethyl ester, a caffeine-sensitive membrane-delimited region of elevated [Ca2+]i was seen associated with the microtubule organizing center. A model is proposed relating the distribution of [Ca2+]i and the location of the external stimulus to the generation and interaction of substances within the cell that both simulate and inhibit increases in [Ca2+]i.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3