E-cigarette use increases susceptibility to bacterial infection by impairment of human neutrophil chemotaxis, phagocytosis, and NET formation

Author:

Corriden Ross1,Moshensky Alexander23,Bojanowski Christine M.23,Meier Angela4,Chien Jason123,Nelson Ryan K.23,Crotty Alexander Laura E.23ORCID

Affiliation:

1. Department of Pharmacology, University of California San Diego, La Jolla, California

2. Pulmonary and Critical Care Section, Veterans Affairs San Diego Healthcare System, La Jolla, California

3. Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, California

4. Department of Anesthesiology, Division of Critical Care, University of California, San Diego, La Jolla, California

Abstract

E-cigarettes are portrayed as safer relative to conventional tobacco. However, burgeoning evidence suggests that E-cigarettes may adversely affect host defenses. However, the precise mechanisms by which E-cigarette vapor alters innate immune cell function have not been fully elucidated. We determined the effects of E-cigarette exposure on the function and responses to infectious challenge of the most abundant innate immune cell, the neutrophil, using isolated human neutrophils and a mouse model of gram-negative infection. Our results revealed that human neutrophils exposed to E-cigarette vapor had 4.2-fold reductions in chemotaxis toward the bacterial cell-well component f-Met-Leu-Phe ( P < 0.001). F-actin polarization and membrane fluidity were also adversely affected by E-cigarette vapor exposure. E-cigarette-exposed human neutrophils exhibited a 48% reduction in production of reactive oxygen species (ROS; P < 0.001). Given the central role of ROS in neutrophil extracellular trap (NET) production, NET production was quantified, and E-cigarette vapor exposure was found to reduce NETosis by 3.5-fold ( P < 0.01); formulations with and without nicotine containing propylene glycol exhibiting significant suppressive effects. However, noncanonical NETosis was unaffected. In addition, exposure to E-cigarette vapor lowered the rate of phagocytosis of bacterial bioparticles by 47% ( P < 0.05). In our physiological mouse model of chronic E-cigarette exposure and sepsis, E-cigarette vapor inhalation led to reduced neutrophil migration in infected spaces and a higher burden of Pseudomonas. These findings provide evidence that E-cigarette use adversely impacts the innate immune system and may place E-cigarette users at higher risk for dysregulated inflammatory responses and invasive bacterial infections.

Funder

American Heart Association

HHS | NIH | National Heart, Lung, and Blood Institute

American Thoracic Society

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3