Affiliation:
1. Departments of Biochemistry,
2. Physiology and Biophysics,
3. Anatomy, and
4. Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
Abstract
We examined the effects of hypoxia on the release of dopamine (DA) and norepinephrine (NE) from rat pheochromocytoma 12 (PC-12) cells and assessed the involvement of Ca2+ and protein kinases in stimulus-secretion coupling. Catecholamine release was monitored by microvoltammetry using a carbon fiber electrode as well as by HPLC coupled with electrochemical detection (ECD). Microvoltammetric analysis showed that hypoxia-induced catecholamine secretion (Po 2 of medium ∼40 mmHg) occurred within 1 min after the onset of the stimulus and reached a plateau between 10 and 15 min. HPLC-ECD analysis revealed that, at any level of Po 2, the release of NE was greater than the release of DA. In contrast, in response to K+ (80 mM), DA release was ∼11-fold greater than NE release. The magnitude of hypoxia-induced NE and DA releases depended on the passage, source, and culture conditions of the PC-12 cells. Omission of extracellular Ca2+ or addition of voltage-gated Ca2+ channel blockers attenuated hypoxia-induced release of both DA and NE to a similar extent. Protein kinase inhibitors, staurosporine (200 nM) and bisindolylmaleimide I (2 μM), on the other hand, attenuated hypoxia-induced NE release more than DA release. However, protein kinase inhibitors had no significant effect on K+-induced NE and DA releases. These results demonstrate that hypoxia releases catecholamines from PC-12 cells and that, for a given change in Po 2, NE release is greater than DA release. It is suggested that protein kinases are involved in the enhanced release of NE during hypoxia.
Publisher
American Physiological Society
Cited by
82 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献