Affiliation:
1. Department of Pathology, St. Louis University Medical School, St. Louis, Missouri 63104
Abstract
Activation of phospholipase A2(PLA2) and accumulation of lysophosphatidylcholine contribute importantly to arrhythmogenesis during acute myocardial ischemia. We examined thrombin stimulation of PLA2 activity in isolated ventricular myocytes. Basal and thrombin-stimulated cardiac myocyte PLA2 activity demonstrated a distinct preference for sn-1 ether-linked phospholipids with arachidonate esterified at the sn-2 position. The majority of PLA2 activity was calcium independent and membrane associated. Thrombin stimulation of membrane-associated PLA2 occurs in a time- and concentration-dependent fashion. An increase in PLA2 activity was also observed using the synthetic peptide SFLLRNPNDKYEPF (the tethered ligand generated by thrombin cleavage of its receptor). Bromoenol lactone, a selective inhibitor of calcium-independent PLA2, completely blocked thrombin-stimulated increases in PLA2 activity and arachidonic acid release. No significant inhibition of thrombin-induced PLA2 was observed following pretreatment with mepacrine or dibucaine. These data confirm the presence of high-affinity thrombin receptors on isolated cardiac myocytes and demonstrate the specific activation of a unique membrane-associated, calcium-independent PLA2 following thrombin receptor ligation.
Publisher
American Physiological Society
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献