Human Na+-myo-inositol cotransporter gene: alternate splicing generates diverse transcripts

Author:

Porcellati Francesca1,Hlaing Tommy2,Togawa Masaki1,Stevens Martin J.1,Larkin Dennis D.1,Hosaka Yoshiyuki1,Glover Thomas W.3,Henry Douglas N.4,Greene Douglas A.1,Killen Paul D.2

Affiliation:

1. Departments of Internal Medicine,

2. Pathology,

3. Human Genetics, and

4. Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan 48109

Abstract

Na+- myo-inositol cotransport activity generally maintains millimolar intracellular concentrations of myo-inositol and specifically promotes transepithelial myo-inositol transport in kidney, intestine, retina, and choroid plexus. Glucose-induced, tissue-specific myo-inositol depletion and impaired Na+- myo-inositol cotransport activity are implicated in the pathogenesis of diabetic complications, a process modeled in vitro in cultured human retinal pigment epithelium (RPE) cells. To explore this process at the molecular level, a human RPE cDNA library was screened with a canine Na+-dependent myo-inositol cotransporter (SMIT) cDNA. Overlapping cDNAs spanning 3569 nt were cloned. The resulting cDNA sequence contained a 2154-nt open reading frame, 97% identical to the canine SMIT amino acid sequence. Genomic clones containing SMIT exons suggested that the cDNA is derived from at least five exons. Hypertonic stress induced a time-dependent increase, initially in a 16-kb transcript and subsequently in 11.5-, 9.8-, 8.5-, 3.8-, and ∼1.2-kb SMIT transcripts, that was ascribed to alternate exon splicing using exon-specific probes and direct cDNA sequencing. The human SMIT gene is a complex multiexon transcriptional unit that by alternate exon splicing generates multiple SMIT transcripts that accumulate differentially in response to hypertonic stress.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3