A volume-sensitive protein kinase regulates the Na-K-2Cl cotransporter in duck red blood cells

Author:

Lytle Christian1

Affiliation:

1. Division of Biomedical Sciences, University of California, Riverside, California 92521

Abstract

When Na-K-2Cl cotransport is activated in duck red blood cells by either osmotic cell shrinkage, norepinephrine, fluoride, or calyculin A, phosphorylation of the transporter occurs at a common set of serine/threonine sites. To examine the kinetics and regulation of the activating kinase, phosphatase activity was inhibited abruptly with calyculin A and the subsequent changes in transporter phosphorylation and activity were determined. Increases in fractional incorporation of 32P into the transporter and uptake of 86Rb by the cells were closely correlated, suggesting that the phosphorylation event is rate determining in the activation process. Observed in this manner, the activating kinase was 1) stimulated by cell shrinkage, 2) inhibited by cell swelling, staurosporine, or N-ethylmaleimide, and 3) unaffected by norepinephrine or fluoride. The inhibitory effect of swelling on kinase activity was progressively relieved by calyculin A, suggesting that the kinase itself is switched on by phosphorylation. The kinetics of activation by calyculin A conformed to an autocatalytic model in which the volume-sensitive kinase is stimulated by a product of its own reaction (e.g., via autophosphorylation).

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The biogenesis of potassium transporters: implications of disease-associated mutations;Critical Reviews in Biochemistry and Molecular Biology;2024-07

2. The comparison of pro- and antioxidative parameters in plasma and placental tissues during early phase of placental development in cows;Molecular Biology Reports;2021-01-28

3. Na+-K+-2Cl− Cotransporter;Studies of Epithelial Transporters and Ion Channels;2020

4. Water Homeostasis and Cell Volume Maintenance and Regulation;Cell Volume Regulation;2018

5. Na+-K+-2Cl− Cotransporter;Ion Channels and Transporters of Epithelia in Health and Disease;2015-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3