Human orbital fibroblasts are activated through CD40 to induce proinflammatory cytokine production

Author:

Sempowski Gregory D.1,Rozenblit Julia1,Smith Terry J.1,Phipps Richard P.1

Affiliation:

1. University of Rochester Cancer Center and Departments of Microbiology and Immunology, Pediatrics, and Environmental Medicine, University of Rochester, Rochester 14642; Division of Molecular and Cellular Medicine, Department of Medicine, and Department of Biochemistry and Molecular Biology, Albany Medical College, and Samuel S. Stratton Veterans Affairs Medical Center, Albany, New York 12208

Abstract

CD40 is an important signaling and activation antigen found on certain bone marrow-derived cells. Recently, CD40 has also been shown to be expressed by nonhematopoietic cells, including certain human fibroblasts, but not others. Little is known about the function of CD40 on fibroblasts. The current study investigates the hypothesis that CD40 is expressed on orbital fibroblasts and represents a pathway for interaction between these fibroblasts and CD40 ligand-expressing cells, such as T lymphocytes and mast cells. We report here that orbital connective tissue fibroblasts, obtained from normal donors and from patients with severe thyroid-associated ophthalmopathy (TAO), express functional CD40. CD40 is upregulated ∼10-fold by interferon-γ (500 U/ml) treatment for 72 h. These fibroblasts become activated through triggering of CD40 with CD40 ligand (CD40L). This is evidenced by nuclear translocation of nuclear factor-κB and induction of the proinflammatory and chemoattractant cytokines interleukin-6 and interleukin-8, respectively. These data support the concept that cognate interactions between orbital fibroblasts and infiltrating T lymphocytes, via the CD40-CD40L pathway, may promote the tissue remodeling observed in TAO and other inflammatory diseases of the orbit. Disruption of the CD40-CD40L interaction may represent a therapeutic intervention to reduce the inflammatory components of TAO, which remains a vexing clinical problem.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 144 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3