Calcium/calmodulin-dependent protein kinase II-δ isoform regulation of vascular smooth muscle cell proliferation

Author:

House Suzanne J.,Ginnan Roman G.,Armstrong Shayn E.,Singer Harold A.

Abstract

There is accumulating evidence that Ca2+-dependent signaling pathways regulate proliferation and migration of vascular smooth muscle (VSM) cells, contributing to the intimal accumulation of VSM that is a hallmark of many vascular diseases. In this study we investigated the role of the multifunctional serine/threonine kinase, calmodulin (CaM)-dependent protein kinase II (CaMKII), as a mediator of Ca2+signals regulating VSM cell proliferation. Differentiated VSM cells acutely isolated from rat aortic media express primarily CaMKIIγ gene products, whereas passaged primary cultures of de-differentiated VSM cells express primarily CaMKIIδ2, a splice variant of the δ gene. Experiments examining the time course of CaMKII isoform modulation revealed the process was rapid in onset following initial dispersion and primary culture of aortic VSM with a significant increase in CaMKIIδ2protein and a significant decrease in CaMKIIγ protein within 30 h, coinciding with the onset of DNA synthesis and cell proliferation. Attenuating the initial upregulation of CaMKIIδ2in primary cultured cells using small-interfering RNA (siRNA) resulted in decreased serum-stimulated DNA synthesis and cell proliferation in primary culture. In passaged VSM cells, suppression of CaMKIIδ2activity by overexpression of a kinase-negative mutant, or suppression of endogenous CaMKII content using multiple siRNAs, significantly attenuated serum-stimulated DNA synthesis and cell proliferation. Cell cycle analysis following either inhibitory approach indicated decreased proportion of cells in G1, an increase in proportion of cells in G2/M, and an increase in polyploidy, corresponding with accumulation of multinucleated cells. These results indicate that CaMKIIδ2is specifically induced during modulation of VSM cells to the synthetic phenotypic and is a positive regulator of serum-stimulated proliferation.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3