Localization and interaction of NHERF isoforms in the renal proximal tubule of the mouse

Author:

Wade James B.,Liu Jie,Coleman Richard A.,Cunningham Rochelle,Steplock Deborah A.,Lee-Kwon Whaseon,Pallone Thomas L.,Shenolikar Shirish,Weinman Edward J.

Abstract

In expression systems and in yeast, Na/H exchanger regulatory factor (NHERF)-1 and NHERF-2 have been demonstrated to interact with the renal brush border membrane proteins NHE3 and Npt2. In renal tissue of mice, however, NHERF-1 is required for cAMP regulation of NHE3 and for the apical targeting of Npt2 despite the presence of NHERF-2, suggesting another order of specificity. The present studies examine the subcellular location of NHERF-1 and NHERF-2 and their interactions with target proteins including NHE3, Npt2, and ezrin. The wild-type mouse proximal tubule expresses both NHERF-1 and NHERF-2 in a distinct pattern. NHERF-1 is strongly expressed in microvilli in association with NHE3, Npt2, and ezrin. Although NHERF-2 can be detected weakly in the microvilli, it is expressed predominantly at the base of the microvilli in the vesicle-rich domain. NHERF-2 appears to associate directly with ezrin and NHE3 but not Npt2. NHERF-1 is involved in the apical expression of Npt2 and the presence of other Npt2-binding proteins does not compensate totally for the absence of NHERF-1 in NHERF-1-null mice. Although NHERF-1 links NHE3 to the actin cytoskeleton through ezrin, the absence of NHERF-1 does not result in a generalized disruption of the architecture of the cell. Thus the mistargeting of Npt2 seen in NHERF-1-null mice likely represents a specific disruption of pathways mediated by NHERF-1 to achieve targeting of Npt2. These findings suggest that the organized subcellular distribution of the NHERF isoforms may play a role in the specific interactions mediating physiological control of transporter function.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3