A role for AMPK in increased insulin action after serum starvation

Author:

Ching James Kain1,Rajguru Pooja1,Marupudi Nandhini1,Banerjee Sankha1,Fisher Jonathan S.1

Affiliation:

1. Department of Biology, Saint Louis University, St. Louis, Missouri

Abstract

Serum starvation is a common cell culture procedure for increasing cellular response to insulin, though the mechanism for the serum starvation effect is not understood. We hypothesized that factors known to potentiate insulin action [e.g., AMP-activated protein kinase (AMPK) and p38] or to be involved in insulin signaling leading to glucose transport [e.g., Akt, PKCζ, AS160, and ataxia telangiectasia mutated (ATM)] would be phosphorylated during serum starvation and would be responsible for increased insulin action after serum starvation. L6 myotubes were incubated in serum-containing or serum-free medium for 3 h. Levels of phosphorylated AMPK, Akt, and ATM were greater in serum-starved cells than in control cells. Serum starvation did not affect p38, PKCζ, or AS160 phosphorylation or insulin-stimulated Akt or AS160 phosphorylation. Insulin had no effect on glucose transport in control cells but caused an increase in glucose uptake for serum-starved cells that was preventable by compound C (an AMPK inhibitor), by expression of dominant negative AMPK (AMPK-DN), and by KU55933 (an ATM inhibitor). ATM protein levels increased during serum starvation, and this increase in ATM was prevented by compound C and AMPK-DN. Thus, it appears that AMPK is required for the serum starvation-related increase in insulin-stimulated glucose transport, with ATM as a possible downstream effector.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3