Thiopental-induced insulin secretion via activation of IP3-sensitive calcium stores in rat pancreatic β-cells

Author:

Dou Hai-Qiang12,Xu Yun-Fei3,Sun Jin-Peng3,Shang Shujiang1,Guo Shu1,Zheng Liang-Hong1,Chen Chao-chao3,Bruce Iain C.4,Yu Xiao3,Zhou Zhuan1

Affiliation:

1. State Key Laboratory of Membrane Bioengineering and Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China;

2. College of Engineering, Peking University, Beijing, China; and

3. Shandong University School of Medicine, Jinan, Shandong, China;

4. Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China

Abstract

While glucose-stimulated insulin secretion depends on Ca2+ influx through voltage-gated Ca2+ channels in the cell membrane of the pancreatic β-cell, there is also ample evidence for an important role of intracellular Ca2+ stores in insulin secretion, particularly in relation to drug stimuli. We report here that thiopental, a common anesthetic agent, triggers insulin secretion from the intact pancreas and primary cultured rat pancreatic β-cells. We investigated the underlying mechanisms by measurements of whole cell K+ and Ca2+ currents, membrane potential, cytoplasmic Ca2+ concentration ([Ca2+]i), and membrane capacitance. Thiopental-induced insulin secretion was first detected by enzyme-linked immunoassay, then further assessed by membrane capacitance measurement, which revealed kinetics distinct from glucose-induced insulin secretion. The thiopental-induced secretion was independent of cell membrane depolarization and closure of ATP-sensitive potassium (KATP) channels. However, accompanied by the insulin secretion stimulated by thiopental, we recorded a significant intracellular [Ca2+] increase that was not from Ca2+ influx across the cell membrane, but from intracellular Ca2+ stores. The thiopental-induced [Ca2+]i rise in β-cells was sensitive to thapsigargin, a blocker of the endoplasmic reticulum Ca2+ pump, as well as to heparin (0.1 mg/ml) and 2-aminoethoxydiphenyl borate (2-APB; 100 μM), drugs that inhibit inositol 1,4,5-trisphosphate (IP3) binding to the IP3 receptor, and to U-73122, a phospholipase C inhibitor, but insensitive to ryanodine. Thapsigargin also diminished thiopental-induced insulin secretion. Thus, we conclude that thiopental-induced insulin secretion is mediated by activation of the intracellular IP3-sensitive Ca2+ store.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3