Expression of plasmid DNA in the salivary gland epithelium: novel approaches to study dynamic cellular processes in live animals

Author:

Sramkova Monika1,Masedunskas Andrius1,Parente Laura1,Molinolo Alfredo2,Weigert Roberto1

Affiliation:

1. Intracellular Membrane Trafficking Unit and

2. Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland

Abstract

The ability to dynamically image cellular and subcellular structures in a live animal and to target genes to a specific cell population in a living tissue provides a unique tool to address many biological questions in the proper physiological context. Here, we describe a powerful approach that is based on the use of rat submandibular salivary glands, which offer the possibility to easily perform intravital imaging and deliver molecules from the oral cavity, and plasmid DNA, which offers the advantage of rapid manipulations. We show that, under different experimental conditions, a reporter molecule can be rapidly expressed in specific compartments of the glands: 1) in the intercalated ducts, when plasmid DNA is administered alone, and 2) in granular ducts, striated ducts, and, to a lesser extent, acini, when plasmid DNA is mixed with replication-deficient adenovirus subtype 5 particles. Remarkably, we also found that gene expression can be directed to acinar cells when plasmid DNA is administered during isoproterenol-stimulated exocytosis, suggesting a novel mechanism of plasmid internalization regulated by compensatory endocytosis. Finally, as a practical application of these strategies, we show how the expression of fluorescently tagged molecules enables the study of the dynamics of various organelles in live animals at a resolution comparable to that achieved in cell cultures.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3