Nitric oxide increases toxicity of hydrogen peroxide against rat liver endothelial cells and hepatocytes by inhibition of hydrogen peroxide degradation

Author:

Rauen Ursula,Li Tongju,Ioannidis Iosif,de Groot Herbert

Abstract

Nitric oxide (NO) and hydrogen peroxide (H2O2) show cooperativity in their cytotoxic action. The present study was performed to decipher the mechanisms underlying this phenomenon. In cultured liver endothelial cells and in cultured, glutathione-depleted hepatocytes, the combined exposure to NO (released by spermine NONOate, 1 mM) and H2O2 (released by glucose oxidase) induced cell injury that was far higher than the injury elicited by NO or H2O2 alone. In both cell types, the addition of the NO donor increased H2O2 steady-state levels, although with different kinetics: in hepatocytes, the increase in H2O2 levels was already evident at early time points while in liver endothelial cells it became evident after ≥2 h of incubation. NO exposure inhibited H2O2 degradation, assessed after addition of 50 μM, 200 μM, or 4 mM authentic H2O2, significantly in both cell types. However, again, early and delayed inhibition was observed. The late inhibition of H2O2 degradation in endothelial cells was paralleled by a decrease in glutathione peroxidase activity. Glutathione peroxidase inactivation was prevented by hypoxia or by ascorbate, suggesting inactivation by reactive nitrogen oxide species (NOx). Early inhibition of H2O2 degradation by NO, in contrast, could be mimicked by the catalase inhibitor azide. Together, these results suggest that the cooperative effect of NO and H2O2 is due to inhibition of H2O2 degradation by NO, namely to inhibition of catalase by NO itself (predominant in hepatocytes) and/or to inhibition of glutathione peroxidase by NOx (prevailing in endothelial cells).

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3