Conserved residues F316 and G476 in the concentrative nucleoside transporter 1 (hCNT1) affect guanosine sensitivity and membrane expression, respectively

Author:

Lai Yurong,Lee Eun-Woo,Ton Carl C.,Vijay Shashi,Zhang Huixia,Unadkat Jashvant D.

Abstract

The functional significance of two highly conserved amino acid residues, F316 [putative transmembrane domain (TM)7] and G476 (putative TM11), in the concentrative nucleoside transporter hCNT1 (SLC28A1) was examined by performing site-directed mutagenesis. Conservative mutations at these positions (F316A, F316Y, G476A, and G476L) were generated and expressed in Madin-Darby canine kidney (MDCK) cells as fusion polypeptides with green fluorescent protein (GFP). Unlike wild-type hCNT1, G476A-GFP and G476L-GFP were not expressed in the plasma membrane in undifferentiated or differentiated MDCK cells and had no functional activity. Like wild-type hCNT1, F316A-GFP and F316Y-GFP were expressed in the plasma membrane of undifferentiated MDCK cells and in the apical membrane of differentiated MDCK cells. Remarkably, transport of [3H]uridine by F316Y-GFP or F316A-GFP was highly sensitive to inhibition by guanosine. Furthermore, genotyping of exon 11 of hCNT1 (TM7) in a panel of 260 anonymous human DNA samples revealed a novel F316H variant (TT>CA; 1/260). When expressed in MDCK cells, [3H]uridine transport by F316H was also found to be sensitive to inhibition by guanosine (IC50 = 148 μM). The effect of the F316H mutation resembles the N4 type nucleoside transporter phenotype previously reported to be present in human kidneys. We suggest that the N4 transport system is a naturally occurring variant of hCNT1, perhaps at the F316 position. Collectively, our data show that G476 is important for correct membrane targeting, folding, and/or intracellular processing of hCNT1. In addition, we have discovered that hCNT1 displays natural variation at position F316 and that the variant F316H confers on the transporter an unusual sensitivity to inhibition by guanosine.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Impact of Climate Change on Sheep Reproduction;Sheep Production Adapting to Climate Change;2017

2. Solute Carriers;Cancer Drug Discovery and Development;2013-11-30

3. Hormonal and nutritional drivers of intrauterine growth;Current Opinion in Clinical Nutrition and Metabolic Care;2013-05

4. Nucleoside transporters: biological insights and therapeutic applications;Future Medicinal Chemistry;2012-07

5. MDCK Cells and Other Cell-Culture Models of Oral Drug Absorption;Oral Bioavailability;2011-07-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3