Electrophysiology and noise analysis of K+-depolarized epithelia of frog skin

Author:

Tang J.,Abramcheck F. J.,Van Driessche W.,Helman S. I.

Abstract

Epithelia of frog skin bathed either symmetrically with a sulfate-Ringer solution or bathed asymmetrically and depolarized with a 112 mM K+ basolateral solution (Kb+) were studied with intracellular microelectrode techniques. Kb+ depolarization caused an initial decrease of the short-circuit current (Isc) with a subsequent return of the Isc toward control values in 60-90 min. Whereas basolateral membrane resistance (Rb) and voltage were decreased markedly by high [Kb+], apical membrane electrical resistance (Ra) was decreased also. After 60 min, intracellular voltage averaged -27.3 mV, transcellular fractional resistance (fRa) was 86.8%, and Ra and Rb were decreased to 36.1 and 13.0%, of their control values, respectively. Amiloride-induced noise analysis of the apical membrane Na+ channels revealed that Na+ channel density was increased approximately 72% while single-channel Na+ current was decreased to 39.9% of control, roughly proportional to the decrease of apical membrane voltage (34.0% of control). In control and Kb+-depolarized epithelia, the Na+ channel density exhibited a phenomenon of autoregulation. Inhibition of Na+ entry (by amiloride) caused large increases of Na+ channel density toward saturating values of approximately 520 X 10(6) channels/cm2 in Kb+-depolarized tissues.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3