The Akt isoforms are present at distinct subcellular locations

Author:

Santi Stacey A.12,Lee Hoyun123

Affiliation:

1. Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa; and

2. Tumor Biology Group, Northeastern Ontario Regional Cancer Centre, Sudbury Regional Hospital and

3. Department of Medical Sciences, Northern Ontario School of Medicine, Sudbury, Ontario, Canada

Abstract

Akt is involved in the regulation of diverse cellular functions such as cell proliferation, energy metabolism, and apoptosis. Although three Akt isoforms are known, the function of each isoform is poorly understood. To gain a better understanding of each Akt isoform, we examined the subcellular localization and expression of each isoform in transformed and nontransformed cells. Akt1 was localized in the cytoplasm, which is in agreement with the currently accepted model that cytoplasmic Akt is translocated and activated at the inner leaflet of the plasma membrane. Interestingly, HEK-293 and HEK-293T cells contained Akt1 in the nucleus and cytoplasm, respectively, suggesting that SV40 T-antigen plays a crucial role in the cytoplasmic localization and activation of Akt1 in HEK-293T. Akt2 was colocalized with the mitochondria, while Akt3 was localized in both the nucleus and nuclear membrane. The subcellular localization of the Akt isoforms was not substantially altered in response to ionizing radiation or EGF. Furthermore, the ablation of one Akt isoform by small interfering RNA (siRNA) did not alter the subcellular location of the remaining isoforms, suggesting that the major function of one isoform is not compensated for by other isoforms. Together, our data support the notion that Akt2 and Akt3 are regulated at the mitochondrial and nuclear membranes, respectively. The mitochondrial localization of Akt2 raises the possibility that this isoform may be involved in both glucose-based energy metabolism and suppression of apoptosis, two Akt functions previously identified with anti-pan-Akt antibodies.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3