Protein kinase G increases antioxidant function in lung microvascular endothelial cells by inhibiting the c-Abl tyrosine kinase

Author:

Stephens R. Scott1,Servinsky Laura E.1,Rentsendorj Otgonchimeg1,Kolb Todd M.1,Pfeifer Alexander2,Pearse David B.1

Affiliation:

1. Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, and

2. Institute for Pharmacology and Toxicology and Biomedical Center, University of Bonn, Bonn, Germany

Abstract

Oxidant injury contributes to acute lung injury (ALI). We previously reported that activation of protein kinase GI(PKGI) posttranscriptionally increased the key antioxidant enzymes catalase and glutathione peroxidase 1 (Gpx-1) and attenuated oxidant-induced cytotoxicity in mouse lung microvascular endothelial cells (MLMVEC). The present studies tested the hypothesis that the antioxidant effect of PKGIis mediated via inhibition of the c-Abl tyrosine kinase. We found that activation of PKGIwith the cGMP analog 8pCPT-cGMP inhibited c-Abl activity and decreased c-Abl expression in wild-type but not PKGI−/−MLMVEC. Treatment of wild-type MLMVEC with atrial natriuretic peptide also inhibited c-Abl activation. Moreover, treatment of MLMVEC with the c-Abl inhibitor imatinib increased catalase and GPx-1 protein in a posttranscriptional fashion. In imatinib-treated MLMVEC, there was no additional effect of 8pCPT-cGMP on catalase or GPx-1. The imatinib-induced increase in antioxidant proteins was associated with an increase in extracellular H2O2scavenging by MLMVEC, attenuation of oxidant-induced endothelial barrier dysfunction, and prevention of oxidant-induced endothelial cell death. Finally, in the isolated perfused lung, imatinib prevented oxidant-induced endothelial toxicity. We conclude that cGMP, through activation of PKGI, inhibits c-Abl, leading to increased key antioxidant enzymes and resistance to lung endothelial oxidant injury. Inhibition of c-Abl by active PKGImay be the downstream mechanism underlying PKGI-mediated antioxidant signaling. Tyrosine kinase inhibitors may represent a novel therapeutic approach in oxidant-induced ALI.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3