Affiliation:
1. Montreal Neurological Institute and Biology Department, McGill University, Montreal, Quebec, Canada H3A 2B4
Abstract
Little is known of the gene regulatory mechanisms that coordinate the contractile and metabolic specializations of skeletal muscle fibers. Here we report a novel connection between fast isoform contractile protein transgene and glycolytic enzyme expression. In quantitative histochemical studies of transgenic mouse muscle fibers, we found extensive coregulation of the glycolytic enzyme glycerol-3-phosphate dehydrogenase (GPDH) and transgene constructs based on the fast skeletal muscle troponin I (TnIfast) gene. In addition to a common IIB > IIX > IIA fiber type pattern, TnIfast transgenes and GPDH showed correlated fiber-to-fiber variation within each fast fiber type, concerted emergence of high-level expression during early postnatal muscle maturation, and parallel responses to muscle under- or overloading. Regulatory information for GPDH-coregulated expression is carried by the TnIfast first-intron enhancer (IRE). These results identify an unexpected contractile/metabolic gene regulatory link that is amenable to further molecular characterization. They also raise the possibility that the equal expression in all fast fiber types observed for the endogenous TnIfast gene may be driven by different metabolically coordinated mechanisms in glycolytic (IIB) vs. oxidative (IIA) fast fibers.
Publisher
American Physiological Society
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献