Emerging roles of calcium-sensing receptor in the local regulation of intestinal transport of ions and calcium

Author:

Chanpaisaeng Krittikan12,Teerapornpuntakit Jarinthorn13,Wongdee Kannikar14,Charoenphandhu Narattaphol1567

Affiliation:

1. Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand

2. Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, Thailand

3. Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand

4. Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand

5. Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand

6. Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand

7. The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand

Abstract

Whether the intestinal mucosal cells are capable of sensing calcium concentration in the lumen and pericellular interstitium remains enigmatic for decades. Most calcium-regulating organs, such as parathyroid gland, kidney, and bone, are capable of using calcium-sensing receptor (CaSR) to detect plasma calcium and trigger appropriate feedback responses to maintain calcium homeostasis. Although both CaSR transcripts and proteins are abundantly expressed in the crypt and villous enterocytes of the small intestine as well as the surface epithelial cells of the large intestine, the studies of CaSR functions have been limited to amino acid sensing and regulation of epithelial fluid secretion. Interestingly, several lines of recent evidence have indicated that the enterocytes use CaSR to monitor luminal and extracellular calcium levels, thereby reducing the activity of transient receptor potential channel, subfamily V, member 6, and inducing paracrine and endocrine feedback responses to restrict calcium absorption. Recent investigations in zebra fish and rodents have also suggested the role of fibroblast growth factor (FGF)-23 as an endocrine and/or paracrine factor participating in the negative control of intestinal calcium transport. In this review article, besides the CaSR-modulated ion transport, we elaborate the possible roles of CaSR and FGF-23 as well as their crosstalk as parts of a negative feedback loop for counterbalancing the seemingly unopposed calciotropic effect of 1,25-dihydroxyvitamin D3 on the intestinal calcium absorption.

Funder

Mahidol University

The National Research Council of Thailand

Thailand Research Fund

Burapha University

Faculty of Science, Mahidol University

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3