ZnT-1 enhances the activity and surface expression of T-type calcium channels through activation of Ras-ERK signaling

Author:

Mor Merav12,Beharier Ofer12,Levy Shiri1,Kahn Joy1,Dror Shani12,Blumenthal Daniel3,Gheber Levi A.3,Peretz Asher4,Katz Amos52,Moran Arie1,Etzion Yoram2

Affiliation:

1. Department of Physiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel;

2. Cardiac Arrhythmia Research Laboratory, Soroka University Medical Center and Ben-Gurion University of the Negev, Beer-Sheva, Israel

3. Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel;

4. Department of Physiology and Pharmacology, Sackler Medical School, Tel Aviv University, Tel Aviv, Israel;

5. Department of Cardiology, Barzilai Medical Center, Ashkelon, Israel; and

Abstract

Zinc transporter-1 (ZnT-1) is a putative zinc transporter that confers cellular resistance from zinc toxicity. In addition, ZnT-1 has important regulatory functions, including inhibition of L-type calcium channels and activation of Raf-1 kinase. Here we studied the effects of ZnT-1 on the expression and function of T-type calcium channels. In Xenopus oocytes expressing voltage-gated calcium channel (CaV) 3.1 or CaV3.2, ZnT-1 enhanced the low-threshold calcium currents ( IcaT) to 182 ± 15 and 167.95 ± 9.27% of control, respectively ( P < 0.005 for both channels). As expected, ZnT-1 also enhanced ERK phosphorylation. Coexpression of ZnT-1 and nonactive Raf-1 blocked the ZnT-1-mediated ERK phosphorylation and abolished the ZnT-1-induced augmentation of IcaT. In mammalian cells (Chinese hamster ovary), coexpression of CaV3.1 and ZnT-1 increased the IcaT to 166.37 ± 6.37% compared with cells expressing CaV3.1 alone ( P < 0.01). Interestingly, surface expression measurements using biotinylation or total internal reflection fluorescence microscopy indicated marked ZnT-1-induced enhancement of CaV3.1 surface expression. The MEK inhibitor PD-98059 abolished the ZnT-1-induced augmentation of surface expression of CaV3.1. In cultured murine cardiomyocytes (HL-1 cells), transient exposure to zinc, leading to enhanced ZnT-1 expression, also enhanced the surface expression of endogenous CaV3.1 channels. Consistently, in these cells, endothelin-1, a potent activator of Ras-ERK signaling, enhanced the surface expression of CaV3.1 channels in a PD-98059-sensitive manner. Our findings indicate that ZnT-1 enhances the activity of CaV3.1 and CaV3.2 through activation of Ras-ERK signaling. The augmentation of CaV3.1 currents by Ras-ERK activation is associated with enhanced trafficking of the channel to the plasma membrane.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3