In vivo leukocyte labeling with intravenous ferumoxides/protamine sulfate complex and in vitro characterization for cellular magnetic resonance imaging

Author:

Wu Y. Jeffrey,Muldoon Leslie L.,Varallyay Csanad,Markwardt Sheila,Jones Richard E.,Neuwelt Edward A.

Abstract

Cellular labeling with ferumoxides (Feridex IV) superparamagnetic iron oxide nanoparticles can be used to monitor cells in vivo by MRI. The objective of this study was to use histology and MRI to evaluate an in vivo, as opposed to in vitro, technique for labeling of mononuclear leukocytes as a means of tracking inflammatory processes in the brain. Long-Evans rats were intravenously injected with 20 mg/kg ferumoxides, ferumoxtran-10, or ferumoxytol with or without protamine sulfate. Leukocytes and splenocytes were evaluated by cell sorting and iron histochemistry or were implanted into the brain for MRI. Injection of ferumoxides/protamine sulfate complex IV resulted in iron labeling of leukocytes (ranging from 7.4 ± 0.5% to 12.5 ± 0.9% with average 9.2 ± 0.8%) compared with ferumoxides (ranging from 3.9 ± 0.4% to 6.3 ± 0.5% with average 5.0 ± 0.5%) or protamine sulfate alone (ranging from 0% to 0.9 ± 0.7% with average 0.3 ± 0.3%). Cell sorting analysis indicated that iron-labeled cells were enriched for cell types positive for the myelomonocytic marker (CD11b/c) and the B lymphocyte marker (CD45RA) and depleted in the T cell marker (CD3). Neither ferumoxtran-10 nor ferumoxytol with protamine sulfate labeled leukocytes. In vivo ferumoxides/protamine sulfate-loaded leukocytes and splenocytes were detected by MRI after intracerebral injection. Ferumoxides/protamine complex labeled CD45RA-positive and CD11b/c-positive leukocytes in vivo without immediate toxicity. The dose of feumoxides in this report is much higher than the approved human dose, so additional animal studies are required before this approach could be translated to the clinic. These results might provide useful information for monitoring leukocyte trafficking into the brain.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3