Expression and functional characterization of SCaMPER: a sphingolipid-modulated calcium channel of cardiomyocytes

Author:

Cavalli Amy L.1,O'Brien Nicole W.1,Barlow Steven B.1,Betto Romeo2,Glembotski Christopher C.1,Palade Philip T.3,Sabbadini Roger A.1

Affiliation:

1. SDSU Heart Institute and Department of Biology, San Diego State University, San Diego, California 92182-4614;

2. Consiglio Nazionale delle Ricerca Institute of Neuroscience, Section of Muscle Biology and Physiopathology, Department of Biomedical Sciences, University of Padua, 35121 Padua, Italy

3. Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-0641; and

Abstract

Calcium channels are important in a variety of cellular events including muscle contraction, signaling, proliferation, and apoptosis. Sphingolipids have been recognized as mediators of intracellular calcium release through their actions on a calcium channel, sphingolipid calcium release-mediating protein of the endoplasmic reticulum (SCaMPER). The current study investigates the expression and function of SCaMPER in cardiomyocytes. Northern analyses and RT-PCR cloning and sequencing revealed SCaMPER expression in both human and rat cardiac tissue. Immunofluorescence and Western blot analyses demonstrated that SCaMPER is abundant in cardiac tissue and is localized to the sarcotubular junction. This was confirmed by the colocalization of SCaMPER with dihydropyridine and ryanodine receptors by confocal microscopy. Purified T tubules were shown to contain SCaMPER and immunoelectron micrographs suggested that SCaMPER is located to the junctional T tubules, but a junctional SR localization cannot be ruled out. The sphingolipid ligand for SCaMPER, sphingosylphosphorylcholine (SPC), initiated calcium release from the cardiomyocyte SR. Importantly, antisense knockdown of SCaMPER mRNA produced a substantial reduction of sphingolipid-induced calcium release, suggesting that SCaMPER is a potentially important calcium channel of cardiomyocytes.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Making a Difference;European Journal of Translational Myology;2024-08-01

2. Role of Sphingosylphosphorylcholine in Tumor and Tumor Microenvironment;Cancers;2019-10-31

3. NAADP Receptors;Cold Spring Harbor Perspectives in Biology;2019-06-10

4. Lysophospholipid Receptors;Reference Module in Biomedical Sciences;2018

5. Sphingosylphosphorylcholine protects cardiomyocytes against ischemic apoptosis via lipid raft/PTEN/Akt1/mTOR mediated autophagy;Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids;2015-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3