Nitric oxide induces [Ca2+]ioscillations in pituitary GH3cells: involvement ofIDRand ERG K+currents

Author:

Secondo Agnese,Pannaccione Anna,Cataldi Mauro,Sirabella Rossana,Formisano Luigi,Di Renzo Gianfranco,Annunziato Lucio

Abstract

The role of nitric oxide (NO) in the occurrence of intracellular Ca2+concentration ([Ca2+]i) oscillations in pituitary GH3cells was evaluated by studying the effect of increasing or decreasing endogenous NO synthesis with l-arginine and nitro-l-arginine methyl ester (l-NAME), respectively. When NO synthesis was blocked with l-NAME (1 mM) [Ca2+]i, oscillations disappeared in 68% of spontaneously active cells, whereas 41% of the quiescent cells showed [Ca2+]ioscillations in response to the NO synthase (NOS) substrate l-arginine (10 mM). This effect was reproduced by the NO donors NOC-18 and S-nitroso- N-acetylpenicillamine (SNAP). NOC-18 was ineffective in the presence of the L-type voltage-dependent Ca2+channels (VDCC) blocker nimodipine (1 μM) or in Ca2+-free medium. Conversely, its effect was preserved when Ca2+release from intracellular Ca2+stores was inhibited either with the ryanodine-receptor blocker ryanodine (500 μM) or with the inositol 1,4,5-trisphosphate receptor blocker xestospongin C (3 μM). These results suggest that NO induces the appearance of [Ca2+]ioscillations by determining Ca2+influx. Patch-clamp experiments excluded that NO acted directly on VDCC but suggested that NO determined membrane depolarization because of the inhibition of voltage-gated K+channels. NOC-18 and SNAP caused a decrease in the amplitude of slow-inactivating ( IDR) and ether-à-go-go-related gene ( ERG) hyperpolarization-evoked, deactivating K+currents. Similar results were obtained when GH3cells were treated with l-arginine. The present study suggests that in GH3cells, endogenous NO plays a permissive role for the occurrence of spontaneous [Ca2+]ioscillations through an inhibitory effect on IDRand on IERG.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3