Insulin increases the turnover rate of Na+-K+-ATPase in human fibroblasts

Author:

Longo Nicola1,Scaglia Fernando1,Wang Yuhuan1

Affiliation:

1. Division of Medical Genetics, Department of Pediatrics, Emory University, Atlanta, Georgia 30322

Abstract

Insulin stimulates K+ transport by the Na+-K+-ATPase in human fibroblasts. In other cell systems, this action represents an automatic response to increased intracellular [Na+] or results from translocation of transporters from an intracellular site to the plasma membrane. Here we evaluate whether these mechanisms are operative in human fibroblasts. Human fibroblasts expressed the α1 but not the α2 and α3 isoforms of Na+-K+-ATPase. Insulin increased the influx of Rb+, used to trace K+ entry, but did not modify the total intracellular content of K+, Rb+, and Na+ over a 3-h incubation period. Ouabain increased intracellular Na+ more rapidly in cells incubated with insulin, but this increase followed insulin stimulation of Rb+ transport. Bumetanide did not prevent the increased Na+ influx or stimulation of Na+-K+-ATPase. Stimulation of the Na+-K+- ATPase by insulin did not produce any measurable change in membrane potential. Insulin did not affect the affinity of the pump toward internal Na+ or the number of membrane-bound Na+-K+-ATPases, as assessed by ouabain binding. By contrast, insulin slightly increased the affinity of Na+-K+-ATPase toward ouabain. Phorbol esters did not mimic insulin action on Na+-K+-ATPase and inhibited, rather than stimulated, Rb+ transport. These results indicate that insulin increases the turnover rate of Na+-K+-ATPases of human fibroblasts without affecting their number on the plasma membrane or modifying their dependence on intracellular [Na+].

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Skeletal Muscle Na,K-ATPase as a Target for Circulating Ouabain;International Journal of Molecular Sciences;2020-04-20

2. Carnitine transport and fatty acid oxidation;Biochimica et Biophysica Acta (BBA) - Molecular Cell Research;2016-10

3. Insulin Induces Phosphorylation of Serine Residues of Translationally Controlled Tumor Protein in 293T Cells;International Journal of Molecular Sciences;2015-04-03

4. Insulin interacts directly with Na+/K+ATPase and protects from digoxin toxicity;Toxicology;2012-09

5. On the functional interaction between nicotinic acetylcholine receptor and Na+,K+-ATPase;Pflügers Archiv - European Journal of Physiology;2006-04-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3