Affiliation:
1. Program in Cellular and Molecular Physiology,
2. Department of Physiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
3. Program in Neuroscience, and
Abstract
We examined the effects of arachidonic acid (AA) on whole cell Ca2+ channel activity in rat superior cervical ganglion neurons. Our companion paper (Liu L, Barrett CF, and Rittenhouse AR. Am J Physiol Cell Physiol 280: C1293–C1305, 2001) demonstrates that AA induces several effects, including enhancement of current amplitude at negative voltages, and increased activation kinetics. This study examines the mechanisms underlying these effects. First, enhancement is rapidly reversible by bath application of BSA. Second, enhancement appears to occur extracellularly, since intracellular albumin was without effect on enhancement, and bath-applied arachidonoyl coenzyme A, an amphiphilic AA analog that cannot cross the cell membrane, mimicked enhancement. In addition, enhancement is voltage dependent, in that currents were enhanced to the greatest degree at −10 mV, whereas virtually no enhancement occurred positive of +30 mV. We also demonstrate that AA-induced increases in activation kinetics are correlated with enhancement of current amplitude. An observed increase in the voltage sensitivity may underlie these effects. Finally, the majority of enhancement is mediated through N-type current, thus providing the first demonstration that this current type can be enhanced by AA.
Publisher
American Physiological Society
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献