Glutathione protects chemokine-scavenging and antioxidative defense functions in human RBCs

Author:

Dumaswala U. J.1,Zhuo L.1,Mahajan S.2,Nair P. N. M.2,Shertzer H. G.3,Dibello P.4,Jacobsen D. W.4

Affiliation:

1. Hoxworth Blood Center, University of Cincinnati, Cincinnati, Ohio 45267-0055;

2. Allergy and Immunology Division, Buffalo General Hospital, Buffalo, New York 14203;

3. Environmental Health Department, University of Cincinnati, Cincinnati, Ohio 45267; and

4. Department of Cell Biology, The Learner Research Foundation, Cleveland Clinic Foundation, Cleveland, Ohio 44195-0002

Abstract

Oxidant stress, in vivo or in vitro, is known to induce oxidative changes in human red blood cells (RBCs). Our objective was to examine the effect of augmenting RBC glutathione (GSH) synthesis on 1) degenerative protein loss and 2) RBC chemokine- and free radical-scavenging functions in the oxidatively stressed human RBCs by using banked RBCs as a model. Packed RBCs were stored up to 84 days at 1–6°C in Adsol or in the experimental additive solution (Adsol fortified with glutamine, glycine, and N-acetyl-l-cysteine). Supplementing the conventional additive with GSH precursor amino acids improved RBC GSH synthesis and maintenance. The rise in RBC γ-glutamylcysteine ligase activity was directly proportional to the GSH content and inversely proportional to extracellular homocysteine concentration, methemoglobin formation, and losses of the RBC proteins band 3, band 4.1, band 4.2, glyceraldehyde-3-phosphate dehydrogenase, and Duffy antigen ( P < 0.01). Reduced loss of Duffy antigen correlated well with a decrease in chemokine RANTES (regulated upon activation, normal T-cell expressed, and secreted) concentration. We conclude that the concomitant loss of GSH and proteins in oxidatively stressed RBCs can compromise RBC scavenging function. Upregulating GSH synthesis can protect RBC scavenging (free radical and chemokine) function. These results have implications not only in a transfusion setting but also in conditions like diabetes and sickle cell anemia, in which RBCs are subjected to chronic/acute oxidant stresses.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3