cAMP-sensitive endocytic trafficking in A6 epithelia

Author:

Butterworth Michael B.1,Helman Sandy I.2,Els Willem J.1

Affiliation:

1. Department of Anatomy and Cell Biology, Faculty of Health Sciences, University of Cape Town, Observatory 7925, Cape Town, South Africa; and

2. Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

Abstract

Blocker-induced noise analysis and laser scanning confocal microscopy were used to test the idea that cAMP-mediated vesicle exocytosis/endocytosis may be a mechanism for regulation of functional epithelial Na+ channels (ENaCs) at apical membranes of A6 epithelia. After forskolin stimulation of Na+ transport and labeling apical membranes with the fluorescent dye N-(3-triethylammoniumpropyl)4-(6-4 diethylaminophenyl) hexatrienyl pyridinium dibromide (FM 4-64), ENaC densities ( N T) decreased exponentially (time constant ∼20 min) from mean values of 320 to 98 channels/cell within 55 min during washout of forskolin. Two populations of apical membrane-labeled vesicles appeared in the cytosol within 55 min, reaching mean values near 18 vesicles/cell, compared with five vesicles per cell in control, unstimulated tissues. The majority of cAMP-dependent endocytosed vesicles remained within a few micrometers of the apical membranes for the duration of the experiments. A minority of vesicles migrated to >5 μm below the apical membrane. Because steady states require identical rates of endocytosis and exocytosis, and because forskolin increased endocytic rates by fivefold or more, cAMP/protein kinase A acts kinetically not only to increase rates of cycling of vesicles at the apical membranes, but also principally to increase exocytic rates. These observations are consistent with and support, but do not prove, that vesicle trafficking is a mechanism for cAMP-mediated regulation of apical membrane channel densities in A6 epithelia.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3