A role for PYK2 in regulation of ERK1/2 MAP kinases and PI 3-kinase by ANG II in vascular smooth muscle

Author:

Rocic Petra1,Govindarajan Geetha2,Sabri Abdelkarim3,Lucchesi Pamela A.1

Affiliation:

1. Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama 35294;

2. Department of Physiology and the Cardiovascular Institute, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois 60154; and

3. Department of Pharmacology, Columbia University, New York, New York 10032

Abstract

Abnormal vascular smooth muscle cell (VSMC) growth plays a key role in the pathogenesis of hypertension and atherosclerosis. Angiotensin II (ANG II) elicits a hypertrophic growth response characterized by an increase in protein synthesis without cell proliferation. The present study investigated the role of the nonreceptor tyrosine kinase PYK2 in the regulation of ANG II-induced signaling pathways that mediate VSMC growth. Using coimmunoprecipitation analysis, the role of PYK2 as an upstream regulator of both extracellular signal-related kinase (ERK) 1/2 mitogen-activated protein kinase and phosphatidylinositol 3-kinase (PI 3-kinase) pathways was examined in cultured rat aortic VSMC. ANG II (100 nM) promoted the formation of a complex between PYK2 and the ERK1/2 regulators Shc and Grb2. ANG II caused a rapid and Ca2+-dependent tyrosine phosphorylation of the adapter molecule p130Cas, which coimmunoprecipitated both PYK2 and PI 3-kinase in ANG II-treated VSMC. Complex formation between PI 3-kinase and p130Cas and PYK2 was associated with a rapid phosphorylation of the ribosomal p70S6 kinase in a Ca2+- and tyrosine kinase-dependent manner. These data suggest that PYK2 is an important regulator of multiple signaling pathways involved in ANG II-induced VSMC growth.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 97 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3