Mac-1-dependent tyrosine phosphorylation during neutrophil adhesion

Author:

Takami Mimi12,Herrera Roman3,Petruzzelli Lilli14

Affiliation:

1. Department of Internal Medicine, Divisions of

2. Gastroenterology, University of Michigan Medical Center and Department of Veterans Affairs Medical Center, Ann Arbor 48109; and

3. Department of Cell Biology, Parke-Davis Pharmaceutical Research Division, Warner-Lambert Company, Ann Arbor, Michigan 48105

4. Hematology/Oncology and

Abstract

Activated neutrophils display an array of physiological responses, including initiation of the oxidative burst, phagocytosis, and cell migration, that are associated with cellular adhesion. Under conditions that lead to cellular adhesion, we observed rapid tyrosine phosphorylation of an intracellular protein with an approximate relative molecular mass of 92 kDa (p92). Phosphorylation of p92 was inducible when Mac-1 was activated by phorbol 12-myristate 13-acetate, the β2-specific activating antibody CBR LFA-1/2, or interleukin-8 (77 amino acids). In addition, tyrosine phosphorylation of p92 was dependent on engagement of Mac-1 with ligand. Several observations suggest that this event may be an important step in the signaling pathway initiated by Mac-1 binding. p92 phosphorylation was specifically blocked with antibodies to CD11b, the α-subunit of Mac-1, and was rapidly reversible on disengagement of the integrin ligand interaction. Integrin-stimulated phosphorylation of p92 created binding sites that were recognized in vitro by the SH2 domains of c-CrkII and Src. Our observations suggest that neutrophil adhesion mediated through the binding of the β2-integrin Mac-1 initiates a signaling cascade that involves the activation of protein tyrosine kinases and leads to the regulation of protein-protein interactions via SH2 domains, a key process shared with growth factor signaling pathways.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3