Bitter taste transduced by PLC-β2-dependent rise in IP3 and α-gustducin-dependent fall in cyclic nucleotides

Author:

Yan Wentao1,Sunavala Gulshan1,Rosenzweig Sophia1,Dasso Max1,Brand Joseph G.23,Spielman Andrew I.12

Affiliation:

1. Department of Basic Science and Craniofacial Biology, Division of Biological Science, Medicine, and Surgery, New York University College of Dentistry, New York, New York 10010;

2. Monell Chemical Senses Center, Philadelphia 19104-3308; and

3. Philadelphia Veterans Affairs Medical Center, and University of Pennsylvania, Philadelphia, Pennsylvania 19104

Abstract

Current evidence points to the existence of multiple processes for bitter taste transduction. Previous work demonstrated involvement of the polyphosphoinositide system and an α-gustducin (Gαgust)-mediated stimulation of phosphodiesterase in bitter taste transduction. Additionally, a taste-enriched G protein γ-subunit, Gγ13, colocalizes with Gαgustand mediates the denatonium-stimulated production of inositol 1,4,5-trisphosphate (IP3). Using quench-flow techniques, we show here that the bitter stimuli, denatonium and strychnine, induce rapid (50–100 ms) and transient reductions in cAMP and cGMP and increases in IP3 in murine taste tissue. This decrease of cyclic nucleotides is inhibited by Gαgust antibodies, whereas the increase in IP3 is not affected by antibodies to Gαgust. IP3 production is inhibited by antibodies specific to phospholipase C-β2(PLC-β2), a PLC isoform known to be activated by Gβγ-subunits. Antibodies to PLC-β3 or to PLC-β4 were without effect. These data suggest a transduction mechanism for bitter taste involving the rapid and transient metabolism of dual second messenger systems, both mediated through a taste cell G protein, likely composed of Gαgust/β/γ13, with both systems being simultaneously activated in the same bitter-sensitive taste receptor cell.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 113 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3