Control of microtubule assembly by extracellular matrix and externally applied strain

Author:

Putnam A. J.1,Schultz K.1,Mooney D. J.123

Affiliation:

1. Departments of Chemical Engineering,

2. Biomedical Engineering, and

3. Biologic and Materials Sciences, University of Michigan, Ann Arbor, Michigan 48109-2136

Abstract

A number of studies have suggested that externally applied mechanical forces and alterations in the intrinsic cell-extracellular matrix (ECM) force balance equivalently induce changes in cell phenotype. However, this possibility has never been directly tested. To test this hypothesis, we directly investigated the response of the microtubule (MT) cytoskeleton in smooth muscle cells to both mechanical signals and alterations in the ECM. A tensile force that resulted in a positive 10% step change in substrate strain increased MT mass by 34 ± 10% over static controls, independent of the cell adhesion ligand and tyrosine phosphorylation. Conversely, a compressive force that resulted in a negative 10% step change in substrate strain decreased MT mass by 40 ± 6% over static controls. In parallel, increasing the density of the ECM ligand fibronectin from 50 to 1,000 ng/cm2 in the absence of any applied force increased the amount of polymeric tubulin in the cell from 59 ± 11% to 81 ± 13% of the total cellular tubulin. These data are consistent with a model in which MT assembly is, in part, controlled by forces imposed on these structures, and they suggest a novel control point for MT assembly by altering the intrinsic cell-ECM force balance and applying external mechanical forces.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3