Episodic ataxia type 1 mutation F184C alters Zn2+-induced modulation of the human K+ channel Kv1.4-Kv1.1/Kvβ1.1

Author:

Imbrici Paola,D'Adamo Maria Cristina,Cusimano Antonella,Pessia Mauro

Abstract

Episodic ataxia type 1 (EA1) is a Shaker-like channelopathy characterized by continuous myokymia and attacks of imbalance with jerking movements of the head, arms, and legs. Although altered expression and gating properties of Kv1.1 channels underlie EA1, several disease-causing mechanisms remain poorly understood. It is likely that Kv1.1, Kv1.4, and Kvβ1.1 subunits form heteromeric channels at hippocampal mossy fiber boutons from which Zn2+ ions are released into the synaptic cleft in a Ca2+-dependent fashion. The sensitivity of this macromolecular channel complex to Zn2+ is unknown. Here, we show that this heteromeric channel possesses a high-affinity (<10 μM) and a low-affinity (<0.5 mM) site for Zn2+, which are likely to regulate channel availability at distinct presynaptic membranes. Furthermore, the EA1 mutation F184C, located within the S1 segment of the Kv1.1 subunit, markedly decreased the equilibrium dissociation constants for Zn2+ binding to the high- and low-affinity sites. The functional characterization of the Zn2+ effects on heteromeric channels harboring the F184C mutation also showed that this ion significantly 1) slowed the activation rate of the channel, 2) increased the time to reach peak current amplitude, 3) decreased the rate and amount of current undergoing N-type inactivation, and 4) slowed the repriming of the channel compared with wild-type channels. These results demonstrate that the EA1 mutation F184C will not only sensitize the homomeric Kv1.1 channel to extracellular Zn2+, but it will also endow heteromeric channels with a higher sensitivity to this metal ion. During the vesicular release of Zn2+, its effects will be in addition to the intrinsic gating defects caused by the mutation, which is likely to exacerbate the symptoms by impairing the integration and transmission of signals within specific brain areas.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3