SV2 regulates neurotransmitter release via multiple mechanisms

Author:

Nowack Amy1,Yao Jia1,Custer Kenneth L.2,Bajjalieh Sandra M.1

Affiliation:

1. Department of Pharmacology and

2. Graduate Program in Neurobiology and Behavior, University of Washington, Seattle, Washington

Abstract

Among the proteins that mediate calcium-stimulated transmitter release, the synaptic vesicle protein 2 (SV2) stands out as a unique modulator specific to the neurons and endocrine cells of vertebrates. In synapses, SV2 regulates the expression and trafficking of the calcium sensor protein synaptotagmin, an action consistent with the reduced calcium-mediated exocytosis observed in neurons lacking SV2. Yet SV2 contains amino acid motifs consistent with it performing other actions that could regulate presynaptic functioning and that might underlie the mechanism of drug action. To test the role of these functional motifs, we performed a mutagenic analysis of SV2A and assessed the ability of mutant SV2A proteins to restore normal synaptic transmission in neurons from SV2A/B knockout mice. We report that SV2A-R231Q, harboring a mutation in a canonical transporter motif, restored normal synaptic depression (a measure of release probability and signature deficit of neurons lacking SV2). In contrast, normal synaptic depression was not restored by SV2A-W300A and SV2A-W666A, harboring mutations of conserved tryptophans in the 5th and 10th transmembrane domains. Although they did not rescue normal neurotransmission, SV2A-W300A and SV2A-W666A did restore normal levels of synaptotagmin expression and internalization. This indicates that tryptophans 300 and 666 support an essential action of SV2 that is unrelated to its role in synaptotagmin expression or trafficking. These results indicate that SV2 performs at least two actions at the synapse that contribute to neurotransmitter release.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 117 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3