Acute decompression following simulated dive conditions alters mitochondrial respiration and motility

Author:

Jang David H.1,Owiredu Shawn1,Ranganathan Abhay2,Eckmann David M.23ORCID

Affiliation:

1. Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania

2. Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania

3. Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania

Abstract

While barotrauma, decompression sickness, and drowning-related injuries are common morbidities associated with diving and decompression from depth, it remains unclear what impact rapid decompression has on mitochondrial function. In vitro diving simulation was performed with human dermal fibroblast cells subjected to control, air, nitrogen, and oxygen dive conditions. With the exception of the gas mixture, all other related variables, including absolute pressure exposure, dive and decompression rates, and temperature, were held constant. High-resolution respirometry was used to examine key respiratory states. Mitochondrial dynamic function, including net movement, number, and rates of fusion/fission events, was obtained from fluorescence microscopy imaging. Effects of the dive conditions on cell cytoskeleton were assessed by imaging both actin and microtubules. Maximum respiration was lower in fibroblasts in the air group than in the control and nitrogen groups. The oxygen group had overall lower respiration when compared with all other groups. All groups demonstrated lower mitochondrial motility when compared with the control group. Rates of fusion and fission events were the same between all groups. There were visible differences in cell morphology consistent with the actin staining; however, there were no appreciable changes to the microtubules. This is the first study to directly assess mitochondrial respiration and dynamics in a cell model of decompression. Both hyperbaric oxygen and air dive conditions produce deleterious effects on overall mitochondrial health in fibroblasts.

Funder

office of naval research

NIH

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3