Author:
Fioretti Bernard,Catacuzzeno Luigi,Sforna Luigi,Aiello Francesco,Pagani Francesca,Ragozzino Davide,Castigli Emilia,Franciolini Fabio
Abstract
The effects of histamine on the membrane potential and currents of human glioblastoma (GL-15) cells were investigated. In perforated whole cell configuration, short (3 s) applications of histamine (100 μM) hyperpolarized the membrane by activating a K+-selective current. The response involved the activation of the pyrilamine-sensitive H1 receptor and Ca2+ release from thapsigargin-sensitive intracellular stores. The histamine-activated current was insensitive to tetraethylammonium (3 mM), iberiotoxin (100 nM), and d-tubocurarine (100 μM) but was markedly inhibited by charybdotoxin (100 nM), clotrimazole (1 μM), and 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34, 1 μM), a pharmacological profile congruent with the intermediate conductance Ca2+-activated K+ (IKCa) channel. Cell-attached recordings confirmed that histamine activated a K+ channel with properties congruent with the IKCa channel (voltage independence, 22 pS unitary conductance and slight inward rectification in symmetrical 140 mM K+). More prolonged histamine applications (2–3 min) often evoked a sustained IKCa channel activity, which depended on a La2+ (10 μM)-sensitive Ca2+ influx. Intracellular Ca2+ measurements revealed that the sustained IKCa channel activity enhanced the histamine-induced Ca2+ signal, most likely by a hyperpolarization-induced increase in the driving force for Ca2+ influx. In virtually all cells examined we also observed the expression of the large conductance Ca2+-activated K+ (BKCa) channel, with a unitary conductance of ca. 230 pS in symmetrical 140 mM K+, and a Ca2+ dissociation constant [ KD(Ca)] of ca. 3 μM, at −40 mV. Notably in no instance was the BKCa channel activated by histamine under physiological conditions. The most parsimonious explanation based on the different KD(Ca) for the two KCa channels is provided.
Publisher
American Physiological Society
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献