Histamine hyperpolarizes human glioblastoma cells by activating the intermediate-conductance Ca2+-activated K+ channel

Author:

Fioretti Bernard,Catacuzzeno Luigi,Sforna Luigi,Aiello Francesco,Pagani Francesca,Ragozzino Davide,Castigli Emilia,Franciolini Fabio

Abstract

The effects of histamine on the membrane potential and currents of human glioblastoma (GL-15) cells were investigated. In perforated whole cell configuration, short (3 s) applications of histamine (100 μM) hyperpolarized the membrane by activating a K+-selective current. The response involved the activation of the pyrilamine-sensitive H1 receptor and Ca2+ release from thapsigargin-sensitive intracellular stores. The histamine-activated current was insensitive to tetraethylammonium (3 mM), iberiotoxin (100 nM), and d-tubocurarine (100 μM) but was markedly inhibited by charybdotoxin (100 nM), clotrimazole (1 μM), and 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34, 1 μM), a pharmacological profile congruent with the intermediate conductance Ca2+-activated K+ (IKCa) channel. Cell-attached recordings confirmed that histamine activated a K+ channel with properties congruent with the IKCa channel (voltage independence, 22 pS unitary conductance and slight inward rectification in symmetrical 140 mM K+). More prolonged histamine applications (2–3 min) often evoked a sustained IKCa channel activity, which depended on a La2+ (10 μM)-sensitive Ca2+ influx. Intracellular Ca2+ measurements revealed that the sustained IKCa channel activity enhanced the histamine-induced Ca2+ signal, most likely by a hyperpolarization-induced increase in the driving force for Ca2+ influx. In virtually all cells examined we also observed the expression of the large conductance Ca2+-activated K+ (BKCa) channel, with a unitary conductance of ca. 230 pS in symmetrical 140 mM K+, and a Ca2+ dissociation constant [ KD(Ca)] of ca. 3 μM, at −40 mV. Notably in no instance was the BKCa channel activated by histamine under physiological conditions. The most parsimonious explanation based on the different KD(Ca) for the two KCa channels is provided.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3