Modulation of nicotinic receptor channels by adrenergic stimulation in rat pinealocytes

Author:

Yoon Jin-Young1,Jung Seung-Ryoung1,Hille Bertil1,Koh Duk-Su12

Affiliation:

1. Department of Physiology and Biophysics, University of Washington, Seattle, Washington; and

2. Department of Physics, POSTECH, Pohang, Kyungbuk, Republic of Korea

Abstract

Melatonin secretion from the pineal gland is triggered by norepinephrine released from sympathetic terminals at night. In contrast, cholinergic and parasympathetic inputs, by activating nicotinic cholinergic receptors (nAChR), have been suggested to counterbalance the noradrenergic input. Here we investigated whether adrenergic signaling regulates nAChR channels in rat pinealocytes. Acetylcholine or the selective nicotinic receptor agonist 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP) activated large nAChR currents in whole cell patch-clamp experiments. Norepinephrine (NE) reduced the nAChR currents, an effect partially mimicked by a β-adrenergic receptor agonist, isoproterenol, and blocked by a β-adrenergic receptor antagonist, propranolol. Increasing intracellular cAMP levels using membrane-permeable 8-bromoadenosine (8-Br)-cAMP or 5,6-dichlorobenzimidazole riboside-3′,5′-cyclic monophosphorothioate (cBIMPS) also reduced nAChR activity, mimicking the effects of NE and isoproterenol. Further, removal of ATP from the intracellular pipette solution blocked the reduction of nAChR currents, suggesting involvement of protein kinases. Indeed protein kinase A inhibitors, H-89 and Rp-cAMPS, blocked the modulation of nAChR by adrenergic stimulation. After the downmodulation by NE, nAChR channels mediated a smaller Ca2+ influx and less membrane depolarization from the resting potential. Together these results suggest that NE released from sympathetic terminals at night attenuates nicotinic cholinergic signaling.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3