The atlas of ACE2 expression in fetal and adult human hearts reveals the potential mechanism of heart-injured patients infected with SARS-CoV-2

Author:

Shao Xiuli1,Zhang Xiaolin1,Zhang Ruijia1,Zhu Rongli1,Hou Xiuyang1,Yi Weijue1,Wu Fengmin1,Hao Liying1,Feng Rui1ORCID

Affiliation:

1. Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China

Abstract

Numerous studies have shown that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can infect host cells through binding to angiotensin I converting enzyme 2 (ACE2) expressing in various tissues and organs. In this study, we deeply analyzed the single-cell expression profiles of ACE2 in fetal and adult human hearts to explore the potential mechanism of SARS-CoV-2 harming the heart. The molecular docking software was used to simulate the binding of SARS-CoV-2 and its variant spike protein with ACE2. The genes closely related to ACE2 in renin-angiotensin system (RAS) were identified by constructing a protein-protein interaction network. Through the analysis of single-cell transcription profiles at different stages of human embryos, we found that the expression level of ACE2 in ventricular myocytes was increased with embryonic development. The results of single-cell sequencing analysis showed that the expression of ACE2 in ventricular myocytes was upregulated in heart failure induced by dilated cardiomyopathy compared with normal hearts. The upregulation of ACE2 increases the risk of infection with SARS-CoV-2 in fetal and adult human hearts. We also further confirmed the expression of ACE2 and ACE2-related genes in normal and SARS-CoV-2-infected human pluripotent stem cell-derived cardiomyocytes. In addition, the pathway analysis revealed that ACE2 may regulate the differently expressed genes in heart failure through calcium signaling pathway and Wnt signaling pathway.

Funder

China Medical University

National Natural Science Foundation of China

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3