Formation of actin-ADF/cofilin rods transiently retards decline of mitochondrial potential and ATP in stressed neurons

Author:

Bernstein Barbara W.,Chen Hui,Boyle Judith A.,Bamburg James R.

Abstract

When neurons in culture are transiently stressed by inhibition of ATP synthesis, they rapidly form within their neurites rodlike actin inclusions that disappear when the insult is removed. Oxidative stress, excitotoxic insults, and amyloid β-peptide oligomers also induce rods. Immunostaining of neurites indicates that these rods also contain the majority of the actin filament dynamizing proteins, actin-depolymerizing factor (ADF) and cofilin (AC). If the rods reappear within 24 h after the stress is removed, the neurite degenerates distal to the rod but with no increase in neuronal death. Here, rods were generated in cultured rat E18 hippocampal cells by overexpression of a green fluorescent protein chimera of AC. Surprisingly, we have found that, for a short period (∼60 min) immediately after initial rod formation, the loss of mitochondrial membrane potential (ΔΨm) and ATP in neurites with rods is slower than in neurites without them. The ΔΨmwas monitored with the fluorescent dye tetramethylrhodamine methyl ester, and ATP was monitored with the fluorescent ion indicator mag-fura 2. Actin in rods is less dynamic than is filamentous actin in other cytoskeletal structures. Because ΔΨmdepends on cellular ATP and because ATP hydrolysis associated with actin filament turnover is responsible for a large fraction of neuronal energy consumption (∼50%), the formation of rods transiently protects neurites by slowing filament turnover and its associated ATP hydrolysis.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3