Troglitazone and pioglitazone interactions via PPAR-γ-independent and -dependent pathways in regulating physiological responses in renal tubule-derived cell lines

Author:

Turturro Francesco,Oliver Robert,Friday Ellen,Nissim Itzhak,Welbourne Tomas

Abstract

Troglitazone (Tro) and pioglitazone (Pio) activation of peroxisome proliferator-activated receptor (PPAR)-γ and PPAR-γ-independent pathways was studied in cell lines derived from porcine renal tubules. PPAR-γ-dependent activation of PPAR response element-driven luciferase gene expression was observed with Pio at 1 μM but not Tro at 1 μM. On the other hand, PPAR-γ-independent P-ERK activation was observed with 5 μM Tro but not with Pio (5–20 μM). In addition, Pio (1–10 μM) increased metabolic acid production and activated AMP-activated protein kinase (AMPK) associated with decreased mitochondrial membrane potential, whereas Tro (1–20 μM) did not. These results are consistent with three pathways through which glitazones may act in effecting metabolic processes (ammoniagenesis and gluconeogenesis) as well as cellular growth: 1) PPAR-γ-dependent and PPAR-γ-independent pathways, 2) P-ERK activation, and 3) mitochondrial AMPK activation. The pathways influence cellular acidosis and glucose and glutamine metabolism in a manner favoring reduced plasma glucose in vivo. In addition, significant interactions can be demonstrated that enhance some physiological processes (ammoniagenesis) and suppress others (ligand-mediated PPAR-γ gene expression). Our findings provide a model both for understanding seemingly opposite biological effects and for enhancing therapeutic potency of these agents.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3