The role of calcium-independent phospholipase A2γ in modulation of aqueous humor drainage and Ca2+sensitization of trabecular meshwork contraction

Author:

Pattabiraman Padmanabhan P.1,Lih Fred B.2,Tomer Kenneth B.2,Rao Ponugoti Vasantha13

Affiliation:

1. Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina;

2. Mass Spectrometry Group, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina; and

3. Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina

Abstract

The contractile and relaxation characteristics of trabecular meshwork (TM) are presumed to influence aqueous humor (AH) drainage and intraocular pressure. The mechanisms underlying regulation of TM cell contractile properties, however, are not well understood. This study investigates the role of calcium-independent phospholipase A2(iPLA2), which controls eicosanoid synthesis, in regulation of TM cell contraction and AH outflow using mechanism-based isoform specific inhibitors (R)-bromoenol lactone (R-BEL, iPLA2γ specific) and (S)-bromoenol lactone (S-BEL, iPLA2β specific). Immunohistochemical analysis revealed intense staining for both iPLA2β and γ isoforms throughout the TM, juxtacanalicular tissue, and Schlemm's canal of human eye. Inhibition of iPLA2γ by R-BEL or small interfering RNA-mediated silencing of iPLA2γ expression induced dramatic changes in TM cell morphology, and decreased actin stress fibers, focal adhesions, and myosin light-chain (MLC) phosphorylation. AH outflow facility increased progressively and significantly in enucleated porcine eyes perfused with R-BEL. This response was associated with a significant decrease in TM tissue MLC phosphorylation and alterations in the morphology of aqueous plexi in R-BEL-perfused eyes. In contrast, S-BEL did not affect either of these parameters. Additionally, R-BEL-induced cellular relaxation of the TM was associated with a significant decrease in the levels of active Rho GTPase, phospho-MLC phosphatase, phospho-CPI-17, and arachidonic acid. Taken together, these observations demonstrate that iPLA2γ plays a significant and isoform-specific role in regulation of AH outflow facility by altering the contractile characteristics of the TM. The effects of iPLA2γ on TM contractile status appear to involve arachidonic acid and Rho GTPase signaling pathways.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3