Using lithium to probe sequential cation interactions with GAT1

Author:

Meinild Anne-Kristine1,Forster Ian C.1

Affiliation:

1. Institute of Physiology and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland

Abstract

Li+ interacts with the Na+/Cl-dependent GABA transporter, GAT1, under two conditions: in the absence of Na+ it induces a voltage-dependent leak current; in the presence of Na+ and GABA, Li+ stimulates GABA-induced steady-state currents. The amino acids directly involved in the interaction with the Na+ and Li+ ions at the so-called “ Na2” binding site have been identified, but how Li+ affects the kinetics of GABA cotransport has not been fully explored. We expressed GAT1 in Xenopus oocytes and applied the two-electrode voltage clamp and 22Na uptake assays to determine coupling ratios and steady-state and presteady-state kinetics under experimental conditions in which extracellular Na+ was partially substituted by Li+. Three novel findings are: 1) Li+ reduced the coupling ratio between Na+ and net charge translocated during GABA cotransport; 2) Li+ increased the apparent Na+ affinity without changing its voltage dependence; 3) Li+ altered the voltage dependence of presteady-state relaxations in the absence of GABA. We propose an ordered binding scheme for cotransport in which either a Na+ or Li+ ion can bind at the putative first cation binding site ( Na2). This is followed by the cooperative binding of the second Na+ ion at the second cation binding site ( Na1) and then binding of GABA. With Li+ bound to Na2, the second Na+ ion binds more readily GAT1, and despite a lower apparent GABA affinity, the translocation rate of the fully loaded carrier is not reduced. Numerical simulations using a nonrapid equilibrium model fully recapitulated our experimental findings.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3