Affiliation:
1. Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina
Abstract
Detrusor smooth muscle (DSM) exhibits increased spontaneous phasic contractions under pathophysiological conditions such as detrusor overactivity (DO). Our previous studies showed that activation of cAMP signaling pathways reduces DSM contractility by increasing the large-conductance voltage- and Ca2+-activated K+ (BK) channel activity. Here, we tested the hypothesis whether inhibition of phosphodiesterases (PDEs) can reduce guinea pig DSM excitability and contractility by increasing BK channel activity. Utilizing isometric tension recordings of DSM isolated strips and the perforated patch-clamp technique on freshly isolated DSM cells, we examined the mechanism of DSM relaxation induced by PDE inhibition. Inhibition of PDEs by 3-isobutyl-1-methylxanthine (IBMX), a nonselective PDE inhibitor, significantly reduced DSM spontaneous and carbachol-induced contraction amplitude, frequency, duration, muscle force integral, and tone in a concentration-dependent manner. IBMX significantly reduced electrical field stimulation-induced contractions of DSM strips. Blocking BK channels with paxilline diminished the inhibitory effects of IBMX on DSM contractility, indicating a role for BK channels in DSM relaxation mediated by PDE inhibition. IBMX increased the transient BK currents (TBKCs) frequency by ∼3-fold without affecting the TBKCs amplitude. IBMX increased the frequency of the spontaneous transient hyperpolarizations by ∼2-fold and hyperpolarized the DSM cell resting membrane potential by ∼6 mV. Blocking the BK channels with paxilline abolished the IBMX hyperpolarizing effects. Under conditions of blocked Ca2+ sources for BK channel activation, IBMX did not affect the depolarization-induced steady-state whole cell BK currents. Our data reveal that PDE inhibition with IBMX relaxes guinea pig DSM via TBKCs activation and subsequent DSM cell membrane hyperpolarization.
Publisher
American Physiological Society
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献