MicroRNA-135a participates in the development of astrocytes derived from bacterial meningitis by downregulating HIF-1α

Author:

Dong Yan12,Wang Jun3,Du Kai-Xian1,Jia Tian-Ming1,Zhu Chang-Lian124,Zhang Yan5,Xu Fa-Lin1

Affiliation:

1. Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China

2. Henan Provincial Key Laboratory of Child Brain Injury, Zhengzhou, China

3. Department of Children Rehabilitation, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China

4. Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

5. Clinical Laboratory, Henan Red Cross Blood Center, Zhengzhou, China

Abstract

Accumulating evidence has highlighted the potential of microRNAs (miRs) as biomarkers in various human diseases. However, the roles of miRs in bacterial meningitis (BM), a severe infectious condition, still remain unclear. Thus, the present study aimed to investigate the effects of miR-135a on proliferation and apoptosis of astrocytes in BM. Neonatal rats were injected with Streptococcus pneumoniae to establish the BM model. The expression of miR-135a and hypoxia-inducible factor 1α (HIF-1α) in the BM rat models were characterized, followed by determination of their interaction. Using gain- and loss-of-function approaches, the effects of miR-135a on proliferation, apoptosis, and expression of glial fibrillary acidic protein (GFAP), in addition to apoptosis-related factors in astrocytes were examined accordingly. The regulatory effect of HIF-1α was also determined along with the overexpression or knockdown of HIF-1α. The results obtained indicated that miR-135a was poorly expressed, whereas HIF-1α was highly expressed in the BM rat models. In addition, restored expression levels of miR-135a were determined to promote proliferation while inhibiting the apoptosis of astrocytes, along with downregulated Bax and Bad, as well as upregulated Bcl-2, Bcl-XL, and GFAP. As a target gene of miR-135a, HIF-1α expression was determined to be diminished by miR-135a. The upregulation of HIF-1α reversed the miR-135a-induced proliferation of astrocytes. Taken together, the key findings of the current study present evidence suggesting that miR-135a can downregulate HIF-1α and play a contributory role in the development of astrocytes derived from BM, providing a novel theoretical perspective for BM treatment approaches.

Funder

the topic of Neurobehavioral in Zhengzhou University

the Science and Technology Program in Henan Province

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3