microRNA-451a prevents activation of matrix metalloproteinases 2 and 9 in human cardiomyocytes during pathological stress stimulation

Author:

Scrimgeour Nathan Robert12,Wrobel Aleksandra12,Pinho Maria João12,Høydal Morten Andre12

Affiliation:

1. Group of Molecular and Cellular Cardiology, Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology, Trondheim, Norway

2. St. Olav’s University Hospital, Trondheim, Norway

Abstract

Matrix metalloproteinases (MMP) are important for cardiac remodeling. Recently, microRNA (miR)-451a has been found to inhibit the expression of both MMP-2 and MMP-9 in human malignancies, but its role in cardiomyocytes has not been explored. We hypothesized that miR-451a modulates MMP-2 and MMP-9 levels in human cardiomyocytes. The role of miR-451a on regulation of MMP-2 and MMP-9 was evaluated in two separate pathological models using Cor.4U human inducible pluripotent stem cell-derived cardiomyocytes (hiPS-CMs): 1) endothelin-1 (ET-1), and 2) 48-h hypoxia (1% O2). Both models were transfected with synthetic miR-451a mimics or scramble control. Expression of both mRNA and miR was determined by quantitative real-time polymerase chain reaction and protein activity by (MMP-2/9) activity assay. Bioinformatic analyses were performed using Targetscan 7.1 and STRING 10.5. hiPS-CMs stimulated by hypoxia increased both MMP-2 and MMP-9 expression levels compared with normoxia ( P < 0.05), whereas ET-1 stimulation only increased the MMP-9 level compared with vehicle controls ( P < 0.05). miR-451a mimics prevented the increase of MMP-2 and MMP-9 expression in both models. Protein activity of MMP-2 and MMP-9 was confirmed to be lower following treatment with miR-451a mimic compared with scramble-controls. Six of 28 predicted gene transcripts of miR-451a were linked to MMP-2 and MMP-9; Macrophage migration inhibitory factor (MIF) was the only predicted target of miR-451a that was increased by ET-1 and hypoxia and reduced following miR-451a mimic transfection. miR-451a prevent the increase of MMP-2 and MMP-9 in human cardiomyocytes during pathological stress. The modulation by miR-451a on MMP-2 and MMP-9 is caused by MIF.

Funder

The liaison between the central Norway regional health authority and the Norwegian

Research council Norway

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3