Affiliation:
1. Department of Oral Growth and Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima 734-8553, Japan
Abstract
Myogenic differentiation in vitro has been usually viewed as being negatively controlled by serum mitogens. A depletion of critical serum components from medium has been considered to be essential for permanent withdrawal from the cell cycle and terminal differentiation of myoblasts. Removal of serum mitogens induces the expression of insulin-like growth factors (IGFs), whereas it inhibits that of basic fibroblast growth factor (bFGF) and transforming growth factor (TGF)-β in myoblasts. These responses of growth factors to medium conditioning seem to be well matched to their functions in proliferation/differentiation. In the present study, we showed that C2C12 myoblasts differentiated actively, even in mitogen-rich medium, and that this medium offered an advantage over mitogen-poor medium in terms of increasing differentiation. Our attention focused on endogenous growth factors, as described above, especially IGFs in mitogen-rich medium. During differentiation, IGF-I and IGF-II mRNA levels increased, but bFGF and TGF-β1 mRNAs decreased. Differentiation was commensurable with IGF mRNA levels and suppressed by antisense oligodeoxynucleotides and neutralizing monoclonal antibodies against IGFs. These results suggest that an autocrine/paracrine loop of IGFs, bFGF, and TGF-β1 is active in proliferating and differentiating C2C12 cells without a depletion of serum and that endogenous IGFs actively override the negative control of differentiation by serum mitogens.
Publisher
American Physiological Society
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献